Examples
These example codes can be found in /usr/share/doc/murange/examples/.
Table of Contents
- Example 1: Calculate the range of a 200 MeV/c muon in Iron
- Example 2: Print a stopping power and range table for Stainless Steel 316L
- Example 3: Calculate energy loss iteratively to estimate the computing performance
- Example 4: Calculate energy range of a 25 GeV muon in Carbon Tetrafluoride at 1 atm and 4 Torr
Example 1
The following example code creates an element, a range table for the element, a muon object with momentum 200 MeV/c and outputs the range,
#include <iostream>
#include <murange.hpp>
int main() {
// Iron (Fe)
Element *Fe = new Element("Fe");
// range table for element Fe
Range *rFe = new Range(Fe);
// muon with momentum 200 MeV/c
Muon *mu = new Muon();
mu->SetMomentum(200);
cout << rFe->GetRange(mu) << " MeV/cm2" << endl;
delete Fe;
delte rFe;
delete mu;
return EXIT_SUCCESS;
}
The outcome of this example is,
$ ./fe-range
56.7843 MeV/cm2
Example 2
The following example code creates the material Stainless Steel 316L and prints to standard output a stopping power and range table,
#include <iostream>
#include <murange.hpp>
int main() {
// Stainless Steel 316L
Material *SS316 = new Mixture(502);
// print stopping power and range table
SS316->PrintRangeTable();
delete SS316;
return EXIT_SUCCESS;
}
The outcome of this example is,
$ ./ss-range-table
̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶
Stainless Steel (316L) (502)
<Z/A> ρ[g/cm³] I[ev] a k=ms x₀ x₁ C δ₀
0.46537 7.990000 323.4 0.16410 3.00000 0.2000 3.0000 4.5224 0.00
̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶
T p Ioization Brems Pair prod Photonucl Total CSDA Range
[MeV] [MeV/c] [MeV cm²/g] [MeV cm²/g] [MeV cm²/g] [MeV cm²/g] [MeV cm²/g] [g/cm²]
̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶
10.0 4.704E+01 5.415 0.000 0.000 0.000 5.415 1.054E+00
14.0 5.616E+01 4.261 0.000 0.000 0.000 4.261 1.895E+00
20.0 6.802E+01 3.355 0.000 0.000 0.000 3.355 3.500E+00
30.0 8.509E+01 2.625 0.000 0.000 0.000 2.625 6.915E+00
40.0 1.003E+02 2.254 0.000 0.000 0.000 2.254 1.105E+01
80.0 1.527E+02 1.714 0.000 0.000 0.000 1.714 3.203E+01
100.0 1.764E+02 1.617 0.000 0.000 0.000 1.617 4.407E+01
140.0 2.218E+02 1.519 0.000 0.000 0.000 1.519 6.971E+01
200.0 2.868E+02 1.467 0.000 0.000 0.000 1.467 1.100E+02
300.0 3.917E+02 1.457 0.000 0.000 0.000 1.457 1.786E+02
400.0 4.945E+02 1.473 0.000 0.000 0.000 1.473 2.469E+02
800.0 8.995E+02 1.554 0.000 0.000 0.000 1.554 5.112E+02
1000.0 1.101E+03 1.587 0.001 0.000 0.000 1.588 6.384E+02
1400.0 1.502E+03 1.641 0.001 0.000 0.001 1.643 8.858E+02
2000.0 2.103E+03 1.700 0.002 0.001 0.001 1.703 1.244E+03
3000.0 3.104E+03 1.765 0.003 0.002 0.001 1.771 1.819E+03
4000.0 4.104E+03 1.811 0.004 0.004 0.002 1.820 2.375E+03
8000.0 8.105E+03 1.914 0.010 0.011 0.003 1.938 4.498E+03
10000.0 1.011E+04 1.944 0.014 0.015 0.004 1.977 5.520E+03
14000.0 1.411E+04 1.989 0.021 0.024 0.006 2.040 7.510E+03
20000.0 2.011E+04 2.033 0.033 0.039 0.008 2.113 1.040E+04
30000.0 3.011E+04 2.080 0.054 0.067 0.012 2.214 1.502E+04
40000.0 4.011E+04 2.112 0.077 0.098 0.016 2.302 1.945E+04
80000.0 8.011E+04 2.183 0.172 0.235 0.031 2.621 3.573E+04
100000.0 1.001E+05 2.205 0.223 0.309 0.038 2.775 4.314E+04
140000.0 1.401E+05 2.237 0.328 0.462 0.054 3.081 5.683E+04
200000.0 2.001E+05 2.271 0.492 0.704 0.076 3.543 7.498E+04
300000.0 3.001E+05 2.310 0.772 1.110 0.114 4.306 1.006E+05
400000.0 4.001E+05 2.337 1.062 1.530 0.152 5.081 1.220E+05
800000.0 8.001E+05 2.404 2.263 3.259 0.307 8.232 1.837E+05
1000000.0 1.000E+06 2.426 2.880 4.144 0.386 9.835 2.059E+05
1400000.0 1.400E+06 2.459 4.119 5.912 0.547 13.036 2.412E+05
2000000.0 2.000E+06 2.494 6.017 8.612 0.791 17.913 2.803E+05
3000000.0 3.000E+06 2.535 9.188 13.102 1.210 26.034 3.265E+05
4000000.0 4.000E+06 2.564 12.404 17.641 1.636 34.245 3.599E+05
8000000.0 8.000E+06 2.636 25.386 35.893 3.404 67.319 4.421E+05
10000000.0 1.000E+07 2.660 31.934 45.072 4.313 83.979 4.687E+05
14000000.0 1.400E+07 2.696 44.995 63.382 6.180 117.253 5.088E+05
20000000.0 2.000E+07 2.735 64.715 90.976 9.045 167.471 5.514E+05
30000000.0 3.000E+07 2.780 97.544 136.895 14.000 251.220 5.999E+05
40000000.0 4.000E+07 2.813 130.505 182.930 19.077 335.325 6.342E+05
80000000.0 8.000E+07 2.893 262.586 367.168 40.303 672.950 7.167E+05
100000000.0 1.000E+08 2.920 328.757 459.361 51.277 842.314 7.432E+05
̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶
Example 3
The following example code creates a muon object, an element (Si), a range table and sets the muon kinetic energy randomly, from 10 to 100 MeV, then calculates the energy loss in 1-10 g/cm2 Si, iterated over tries times. The OpenMP time function is used to estimate the performance [Mtrials/s],
#include <iostream>
#include <ctime>
#include <murange.hpp>
#include <omp.h>
int main(int argc, char **argv) {
// number of tries
unsigned long tries = atol(argv[1]);
srand(time(NULL));
// start time
double start_time = omp_get_wtime();
// muon, Si, range table
Muon *mu = new Muon();
Element *Si = new Element("Si");
Range *rSi = new Range(Si);
for ( int i = 0 ; i < tries ; i++ ) {
// kinetic energy between 10 and 100 MeV
double ke = (rand()%(90000000)+10000000)/1000000.;
mu->SetKEnergy(ke);
// thickness between 1 and 10 g/cm2
double s = (rand()%(90000000)+10000000)/10000000.;
rSi->GetOutgoingEnergy(mu,s);
}
// stop time
double stop_time = omp_get_wtime();
double performance = (double)tries / (time_stop-time_start) / 1000000.;
fprintf(stderr,"\nnumber of tries: %ld\n",tries);
fprintf(stderr,"execution time: %g s\n",time_stop-time_start);
fprintf(stderr,"performance: %g Mtrials/s\n\n",performance);
delete mu;
delete Si;
delete rSi;
return EXIT_SUCCESS;;
}
The outcome of this example is,
$ ./performance 100000000
number of tries: 100000000
execution time: 18.8887 s
performance: 5.29418 Mtrials/s
The plot shows the performance as a function of number of trials, a useful measure when performing Monte Carlo simulations.

A similar OpenMP version of the above code, with 8 threads gives,
$ ./performance-omp 8 100000000
using OpenMP with 8/16 threads
number of tries: 100000000
execution time: 3.22482 s
performance: 31.0095 Mtrials/s
and performance plot,

Example 4
The following example code calculates the range of a 25 GeV muon in Carbon Tetrafluoride (CF4) at 1 atm and 4 Torr,
#include <iostream>
#include <murange.hpp>
int main() {
// range table for CF4
Compound *CF4 = new Compound(326);
Range *rCF4 = new Range(CF4);
// muon with kinetic energy 25 GeV
Muon *mu = new Muon(25e3);
cout << "Range of" << mu->GetKEnergy()/1000 << " GeV muon in CF4 at 1 atm: " << rCF4->GetRange(mu) << " MeV/cm2" << endl;
// change the density to 4 Torr
CF4->SetDensity(1.8942e-5);
rCF4 = new Range(CF4);
cout << "Range of" << mu->GetKEnergy()/1000 << " GeV muon in CF4 at 4 Torr: " << rCF4->GetRange(mu) << " MeV/cm2" << endl;
delete CF4;
delte rCF4;
delete mu;
return EXIT_SUCCESS;
}
The outcome of this example is,
$ ./cf4-range
Range of 25 GeV muon in CF4 at 1 atm: 10308.6 MeV/cm2
Range of 25 GeV muon in CF4 at 4 Torr: 10107.5 MeV/cm2
This demostrates the density dependence of the electronic stopping power.
← Return to Muon Range Library